Logica e matematica di base

Domanda 1. Quattro amici, Antonio, Beatrice, Carlo e Davide, discutono se uscire o meno. Le posizioni sono le seguenti:

Antonio: "Se piove, non esco"

Beatrice: "Esco se e solo se Carlo esce oppure Antonio resta a casa"

Carlo: "Se esce Antonio esco anch'io"

Davide: "Se non piove, io esco"

Quale delle seguenti affermazioni è sicuramente vera?

- (a) Se piove, Beatrice e Carlo restano a casa
- (b) Se non piove, o Carlo resta a casa o Antonio esce
- (c) Se Carlo esce allora escono anche Antonio e Beatrice
- (d) Se Antonio esce allora escono tutti

Domanda 2. In un gruppo di 5 persone, ognuno ha due amici e due nemici. Supponendo che amicizia e inimicizia siano reciproche (ossia se Paolo è amico di Martina allora Martina è amica di Paolo etc.), qual è il massimo numero n tale che esistano n persone nel gruppo tutte amiche fra di loro?

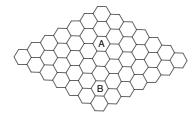
- (a) 3
- (b) 4
- (c) 2
- (d) Non si può determinare con i dati a disposizione

Domanda 3. Siano a, b, c tre numeri naturali, di cui almeno uno pari. Quale delle seguenti affermazioni è certamente corretta?

- (a) abc è pari e a + b + c è dispari
- (b) ab dispari implica a + b + c dispari
- (c) ab dispari implica b + c dispari
- (d) Nessuna delle precedenti

Domanda 4. Paola osserva: nel nostro gruppo di 10 amici ci sono almeno n persone nate in anni diversi e almeno n nate in città diverse. Qual è il minimo valore di n per cui si può essere sicuri che nel gruppo ci siano almeno due persone nate in anni diversi e in città diverse?

- (a) 2
- (b) 3
- (c) 4


(d) 10

Domanda 5. Consideriamo un pavimento infinito fatto di mattonelle esagonali (vedi figura, in cui è rappresentata solo una parte di tale pavimento). Si vogliono colorare le infinite mattonelle in modo che non ci siano due mattonelle adiacenti dello stesso colore e anche che le mattonelle A e B abbiano colori diversi. Qual è il numero minimo di colori che si devono usare?

(d) 6

Domanda 6. I formati A0, A1, A2,... dei fogli di carta sono definiti nel modo seguente. Un foglio A0 è un rettangolo non quadrato. Dividendolo a metà parallelamente al suo lato più corto si ottengono due fogli A1. Dividendo a metà parallelamente al suo lato più corto un foglio A1 si ottengono due fogli A2, e così via. Tutti i fogli A0, A1, A2, ... sono rettangoli simili. Un foglio A0 ha area 1m².

Quanto misura il lato più lungo di un foglio A0?

- (a) I dati forniti non sono sufficienti a rispondere
- (b) $\frac{2}{\sqrt[4]{2}}$ metri
- (c) $\sqrt[4]{2}$ metri
- (d) $\frac{1+\sqrt{5}}{2}$ metri

Domanda 7. Indichiamo con a e b le lunghezze dei lati di un rettangolo i cui 4 vertici giacciono sui quattro lati di un quadrato di lato 1 (vertici distinti su lati distinti). Sapendo che vale a < b allora il perimetro del rettangolo è uguale a:

- (a) $2\sqrt{1}$
- (b) $2\sqrt{2}$
- (c) $2\sqrt{3}$
- (d) $2\sqrt{4}$

Domanda 8. L'insieme $\{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$

- (a) Contiene l'asse z
- (b) Non contiene l'asse y
- (c) Contiene un piano che passa per il punto (0,0,1)
- (d) Contiene un piano perpendicolare all'asse y

Domanda 9. Un miliardario vuole comprare 100 gioielli spendendo esattamente 50 milioni di euro. Sapendo che ogni diamante costa 5 milioni, ogni rubino 1 milione e ogni zaffiro 100 mila euro, in quanti modi diversi il miliardario può organizzare il suo acquisto?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Domanda 10. Siano $a, b, c \in d$ quattro interi positivi tali che:

$$a \cdot 4444 - b \cdot 333 + c \cdot 22 - d \cdot 1 = 2019$$
.

Qual è il minimo valore possile per la somma a + b + c + d?

- (a) 21
- (b) 22
- (c) 23
- (d) 24

Domanda 11. Due treni della stessa lunghezza e che si muovono alla velocità di 360 km/h, su binari paralleli, ma in direzione opposta, si incrociano. Un viaggiatore dal finestrino di uno dei treni cronometra il tempo durante il quale vede l'altro treno: 2 secondi. Quanto è lungo ciascun treno?

- (a) 200 metri
- (b) 400 metri
- (c) 300 metri
- (d) 182.5 metri

Domanda 12. Quante sono le cinquine di numeri interi consecutivi x, x + 1, x + 2, x + 3, x + 4 (con $x \in \mathbb{Z}$) tali che la somma dei quadrati dei primi tre numeri sia uguale alla somma dei quadrati degli ultimi due?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Domanda 13. Due bicchieri A e B contengono l'uno V decilitri di sale e l'altro V decilitri di pepe. Si versano q decilitri di sale da A in B. Poi si mescola perfettamente la miscela di sale e pepe così presente in B e se ne versano q decilitri in A. Al termine, quanti decilitri di sale ci sono in A?

- (a) $\frac{qV}{q+V}$ (b) $\frac{V^2}{q+V}$ (c) $\frac{q^2+V}{q+V}$ (d) $\frac{qV^2}{q+V}$

Domanda 14. Per quali N interi positivi esiste un poligono con N lati di lunghezza 1 e ciascun angolo interno di 90° o 270°?

- (a) Tutti i multipli di 8 che non sono multipli di 4
- (b) Tutti i multipli di 4
- (c) Tutti i multipli di 4 che non sono multipli di 8
- (d) Tutti i multipli di 4 diversi da 8

Domanda 15. In un cerchio C di raggio 60 cm si vogliono porre sei cerchi di raggio r, in modo che non si sovrappongano (si possono toccare i bordi) e che siano tangenti a C. Qual è il massimo valore di r per cui ciò è possibile?

- (a) 15
- (b) 20
- (c) 6π
- (d) $3\sqrt{3}\pi$

Matematica

Domanda 16. Per andare al mare Giovanni può scegliere fra le seguenti opzioni:

- aspettare il bus per 5 minuti; il bus poi si muove ad una velocità media di 25 km/h;
- andare in bici, con velocità media di 20 km/h;
- andare in auto, con velocità media di 40 km/h, perdendo però 6 minuti per andare a prendere l'auto in un garage e 8 minuti per parcheggiare.

Quale delle seguenti affermazioni è vera?

- (a) Se il mare dista 8 km conviene l'autobus
- (b) Se il mare dista 7 km conviene l'autobus
- (c) Se il mare dista 9 km conviene l'autobus
- (d) L'autobus non conviene mai: o bici o auto

Domanda 17. Un robot si muove nello spazio e parte dall'origine O=(0,0,0). Ad ogni passo può spostarsi cambiando una delle proprie coordinate di ± 1 , ossia se si trova nella posizione (a,b,c) può andare in una delle sei posizioni $(a\pm 1,b,c)$, $(a,b\pm 1,c)$, $(a,b,c\pm 1)$. Quanti diversi percorsi portano il robot da O a B=(4,4,4) in 14 passi?

(a)
$$\frac{3}{2} \binom{14}{4} \binom{10}{4}$$

(b)
$$3 \binom{14}{4} \binom{10}{4}$$

(c)
$$3 \binom{14}{4} \binom{10}{4} \binom{6}{5}$$

(d)
$$\frac{14!}{4!4!4!2}$$

Domanda 18. Sia d un numero intero dispari e consideriamo l'equazione

$$x^2 = 4y + d$$

Sia $S_d = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a^2 = 4b + d\}$ l'insieme delle soluzioni intere dell'equazione. Quale delle seguenti affermazioni a riguardo di S_d è vera?

5

- (a) Per alcuni valori di d l'insieme S_d è non vuoto e finito
- (b) Per ogni valore di d l'insieme S_d è vuoto
- (c) Per infiniti valori di d l'insieme S_d è infinito
- (d) Solo per un numero finito di valori di d l'insieme S_d è infinito

Domanda 19. Siano $f, g : \mathbb{R} \to \mathbb{R}$ due funzioni tali che il prodotto fg è una funzione convessa. Quale delle seguenti affermazioni è corretta?

- (a) Almeno una tra f e g è una funzione convessa
- (b) Almeno una tra f e g è una funzione monotona
- (c) Almeno una tra $f \in g$ è una funzione pari
- (d) Nessuna delle precedenti

Domanda 20. Si consideri il sistema di equazioni

$$\begin{cases} ax + by = c \\ dx + ey = f \end{cases}$$

Ilaria e Orazio si sfidano al seguente gioco: comincia Ilaria e fissa il valore di uno dei sei parametri reali a, b, c, d, e, f; poi tocca ad Orazio, che fissa il valore di un altro parametro, e così via. Ilaria vince se e solo se il sistema ottenuto dopo aver fissato tutti i parametri non ha soluzione.

Quale delle seguenti affermazioni è vera?

- (a) Ilaria ha sempre un modo per vincere anche se Orazio gioca al meglio
- (b) Orazio ha sempre un modo per vincere anche se Ilaria gioca al meglio
- (c) Se nelle prime due mosse vengono posti a=0 ed e=1 allora a quel punto Ilaria ha sempre un modo per vincere anche se Orazio gioca al meglio
- (d) Se nelle prime due mosse vengono posti $c \neq 0$ ed $f \neq 0$ allora Orazio non ha più possibilità di vincere

Domanda 21. L'estremo inferiore dell'insieme

$${A \in \mathbb{R} : \sin(x) + A > \cos(x) \text{ per ogni } x \in \mathbb{R}}$$

è:

- (a) $-\infty$
- (b) $-\sqrt{2}$
- (c) $\sqrt{2}$
- (d) 0

Domanda 22. Sia $\{a_n\}$ una successione di numeri reali positivi tale che, per ogni $n \geq 1$, valga

$$\frac{a_{n+1}}{a_n} \le 1 - \frac{1}{n+1}.\tag{1}$$

Allora certamente vale:

- (a) $\lim_{n \to \infty} \sqrt{n} a_n = 0$
- (b) $\lim_{n \to \infty} n^2 a_n = 0$
- (c) $\lim_{n\to\infty} na_n = 0$
- (d) Nessuna delle precedenti possibilità è corretta

Domanda 23. Sia $\{a_n\}$ una successione di numeri reali. L'affermazione

$$\forall \varepsilon \in \left(0, \frac{\pi}{2}\right) \ \exists n_{\varepsilon} \in \mathbb{N} : n > n_{\varepsilon} \Rightarrow |a_n| \cos \varepsilon < \sin \varepsilon$$

è equivalente a

- (a) $\forall \varepsilon \in \left(0, \frac{\pi}{2}\right) \exists n_{\varepsilon} \in \mathbb{N} : n > n_{\varepsilon} \Rightarrow a_{n}^{2} \cos \varepsilon < \sin \varepsilon$
- (b) $\lim_{n\to\infty} a_n$ esiste finito
- (c) La successione $\{a_n\}$ è limitata
- (d) Nessuna delle precedenti possibilità è corretta

Domanda 24. Dire quale delle seguenti affermazioni è falsa a riguardo dei numeri interi della forma $2^{5m} + 1$, dove $m \in \mathbb{N} \setminus \{0\}$.

- (a) Esiste un $m \in \mathbb{N} \setminus \{0\}$ per cui $2^{5m}+1$ è primo
- (b) Per ogni $m\in\mathbb{N}\setminus\{0\}$ il resto della divisione per 3 di $2^{5m}+1$ non è 1
- (c) Per ogni $m\in\mathbb{N}\setminus\{0\}$ $2^{5m}+1$ non è multiplo di 31
- (d) Per ogni $m\in\mathbb{N}\setminus\{0\}$ il resto della divisione per 5 di $2^{5m}+1$ non è 1

Domanda 25. Si consideri la seguente successione definita per ricorrenza: $c_0 = 1$, $c_1 = 2$ e, per ogni $n \ge 2$,

$$c_n = c_{n-1}^2 + 7c_{n-2} + 7.$$

Quanto vale il resto della divisione per 5 di c_{2019} ?

- (a) 0
- (b) 1
- (c) 2
- (d) 3

Fisica

Domanda 26. Una vasca cubica di spigolo L riempita per metà di liquido viene spinta lungo un binario orizzontale con accelerazione costante di modulo $a \leq g$. Nella parete posteriore (rispetto alla direzione di moto) della vasca, all'altezza della base, viene praticato un piccolo foro, da cui il liquido comincia a fuoriuscire. Qual è il modulo v della velocità iniziale di uscita del liquido rispetto alla vasca?

- (a) $v = \sqrt{L(g-a)}$
- (b) $v = \sqrt{L(g+a)}$
- (c) $v = \sqrt{Lg}$
- (d) Non è possibile rispondere perché non viene specificata la densità del liquido

Domanda 27. Un golfista si trova su un campo da gioco orizzontale e tira una palla nella direzione del vento, in modo da sfruttarne la spinta. Il vento esercita sulla palla una forza orizzontale e costante, di norma pari al peso di questa. Con quale angolo rispetto al suolo il golfista deve tirare la palla per ottenere, a parità di velocità iniziale, la gittata massima?

- (a) $\pi/3$ rad
- (b) $\pi/4$ rad
- (c) $3\pi/8$ rad
- (d) $2\pi/9$ rad

Domanda 28. La terza legge di Keplero, ovvero la legge dei periodi, segue dal fatto che la forza di gravitazione universale, oltre ad essere attrattiva, è:

- (a) Di tipo centrale
- (b) Tale che il momento angolare si conserva
- (c) Di tipo centrale e proporzionale all'inverso della distanza al quadrato
- (d) Tale che la velocità areale si conserva

Domanda 29. Conoscendo il flusso F dei neutrini solari sulla Terra, la distanza d Sole-Terra e il processo di produzione di energia nel Sole:

$$4\,{}^{1}\!\mathrm{H}^{+} \ \rightarrow \ {}^{4}\!\mathrm{He}^{2+} + 2\,\mathrm{positroni} + 2\,\mathrm{neutrini} + E\,,$$

dove E è l'energia liberata dalla reazione, qual è la massa di idrogeno del Sole che ogni secondo si trasforma in energia?

Dati:
$$F = 6 \times 10^{14} \text{ m}^{-2} \text{s}^{-1}, d = 1.5 \times 10^{11} \text{ m}, E = 4.3 \times 10^{-12} \text{ J}.$$

(a) $4 \times 10^9 \text{ kg}$

- (b) $4 \times 10^{10} \text{ kg}$
- (c) $2 \times 10^{11} \text{ kg}$
- (d) $2 \times 10^7 \text{ kg}$

Domanda 30. Una palla lanciata verso l'alto in direzione verticale raggiunge l'altezza massima di 8 m, poi cade e rimbalza più volte fino a fermarsi. Dopo ciascun rimbalzo, raggiunge un'altezza massima che è 3/4 dell'altezza raggiunta al rimbalzo precedente. Qual è stata la velocità media v della palla durante il moto? Si approssimi l'accelerazione di gravità a $g=10\,\mathrm{m/s^2}$.

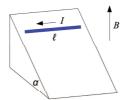
- (a) $v = 2(3 + \sqrt{2})\sqrt{10} \text{ m/s}$
- (b) $v = (2 + \sqrt{3})\sqrt{10} \text{ m/s}$
- (c) $v = 2\sqrt{30} \text{ m/s}$
- (d) $v = 4(2 \sqrt{3})\sqrt{10} \text{ m/s}$

Domanda 31. Un gas perfetto subisce una trasformazione reversibile tale che $\delta Q/\delta \mathcal{L} = k$, dove Q è il calore scambiato con l'esterno, \mathcal{L} è il lavoro compiuto dal gas e k è una costante. Indichiamo con c_V il calore specifico molare a volume costante e con R la costante dei gas. Allora la trasformazione è:

- (a) Isoterma per k=1e isobara per $k=\frac{c_V}{R}+1$
- (b) Isoterma per $k = \frac{c_V}{R}$ e isobara per $k = \frac{c_V}{R} 1$
- (c) Isoterma per k=0 e isobara per $k=\frac{c_V}{R}$
- (d) Isoterma per k = 1 e isobara per $k = \frac{c_V}{R}$

Domanda 32. Un condensatore con capacità $C = 1.5 \,\mu\text{F}$ viene caricato con una batteria da 60 V. Viene quindi scollegato dalla batteria e collegato ad un solenoide con induttanza $L = 1.5 \times 10^{-2} \,\text{Vs/A}$, dando luogo ad oscillazioni LC. Assumendo che il circuito abbia resistenza nulla, qual è la massima corrente che circola nel solenoide?

- (a) 1 A
- (b) 0.6 A
- (c) 0.1 A
- (d) 0.06 A


Domanda 33. Una sbarra conduttrice di massa m e lunghezza ℓ è appoggiata su un piano inclinato di angolo α come in figura. La sbarra è percorsa da una corrente I uniforme lungo la sua lunghezza. È presente un campo magnetico verticale di intensità B. Trascurando l'attrito ed indicando con g l'accelerazione di gravità, per quale valore di I la sbarra rimane ferma in equilibrio?

(a)
$$I = \frac{mg}{\ell B} \cot \alpha$$

(b)
$$I = \frac{mg}{\ell B} \tan \alpha$$

(a)
$$I = \frac{mg}{\ell B} \cot \alpha$$

(b) $I = \frac{mg}{\ell B} \tan \alpha$
(c) $I = \frac{\ell B}{mg} \cot \alpha$

(d)
$$I = \frac{mg}{\ell B}$$

Domanda 34. Al tempo t=0, una particella con massa m e carica q entra con velocità $\vec{v}_0 = v_0 \vec{u}_x$ in una regione di spazio permeata da un campo magnetico $\vec{B} =$ $B_0\vec{u}_z$ e da un campo elettrico oscillante $\vec{E} = E_0\cos(\omega t)\vec{u}_x$. Qui v_0 , B_0 ed E_0 sono delle costanti non-nulle e i vettori unitari $\vec{u}_x, \vec{u}_y, \vec{u}_z$ denotano l'orientazione degli assi cartesiani. Per quale scelta della frequenza angolare ω del campo elettrico la particella raggiungerà la velocità più elevata?

(a)
$$\omega \gg \frac{qB_0}{m}$$

(b) $\omega = 0$

(b)
$$\omega = 0$$

(c)
$$\omega = \frac{qB_0}{m}$$

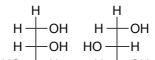
(c)
$$\omega = \frac{qB_0}{m}$$

(d) $\omega = \frac{qB_0}{2m}$

Domanda 35. Realizzando l'esperimento a due fenditure di Young nell'aria si ottiene un'interfrangia di 2 mm (l'interfrangia è la distanza tra due picchi di intensità nella figura d'interferenza). L'esperimento viene ripetuto immergendo completamente il dispositivo nell'acqua. Sapendo che l'indice di rifrazione dell'acqua è n=4/3, la nuova interfrangia è:

- (a) 3 mm
- (b) 2 mm
- (c) 8/3 mm
- (d) 1.5 mm

Chimica


Domanda 36. Qual è la relazione stereochimica tra i seguenti composti?

(a) Diastereoisomeri

(b) Enantiomeri

(c) Stessa molecola

(d) Nessuna delle precedenti

CH₂OH CH₂OH

Domanda 37. Disporre i seguenti composti in ordine crescente di punto di ebollizione:

(a) 2, 1, 3, 4

(b) 4, 1, 2, 3

(c) 3, 4, 1, 2

(d) 4, 3, 1, 2

O_H

2 H

~ ^o^

Domanda 38. Quale delle seguenti sostanze può essere fusa senza rompere dei legami chimici (ionici o covalenti)?

- (a) Solfato di sodio
- (b) Biossido di zolfo
- (c) Biossido di silicio
- (d) Diamante

Domanda 39. In quale tipo di orbitale si trovano gli elettroni a più elevata energia nello ione Mn²⁺? [Mn ha numero atomico 25 e appartiene al settimo gruppo, quarto periodo]

(a) s

(b) p

(c) d

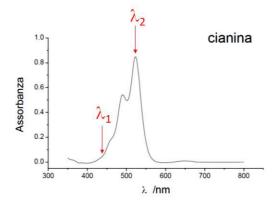
(d) $s \in d$

He
Li Be
Na Mg
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At Rn

Domanda 40. Sapendo che HCN è un acido debole $(K_a = 6.2 \times 10^{-10})$ e NH₃ è una base debole $(K_b = 1.8 \times 10^{-5})$ si può affermare che il valore del pH di una soluzione di NH₄CN:

- (a) È nettamente inferiore a 7
- (b) È nettamente superiore a 7

- (c) È quasi 7
- (d) Dipende dalla concentrazione di NH₄CN


Domanda 41. La dissociazione di acido iodidrico in fase gassosa, $2HI(g) \rightarrow H_2(g) + I_2(g)$ è una reazione elementare esotermica. All'aumentare della temperatura, la costante cinetica di tale reazione

- (a) Diminuisce
- (b) Aumenta
- (d) Diminuisce se anche la pressione totale viene incrementata
- (d) Aumenta se anche la pressione totale viene incrementata

Domanda 42. A 25°C, e con riferimento al solvente acqua, la costante di Henry per la specie O_2 è maggiore della costante di Henry per la CO_2 . Quale affermazione è corretta in merito alle concentrazioni di tali specie dissolte in acqua in condizioni di equilibrio con la fase gas?

- (a) $[O_{2(aq)}] > [CO_{2(aq)}]$ sempre
- (b) $[CO_{2(aq)}] > [O_{2(aq)}]$ sempre
- (c) $[O_{2(aq)}] > [CO_{2(aq)}]$ a parità di pressione parziale di O_2 e CO_2 in fase gas
- (d) $[CO_{2(aq)}] > [O_{2(aq)}]$ a parità di pressione parziale di O_2 e CO_2 in fase gas

Domanda 43. In figura è mostrato lo spettro di assorbimento UV-Vis di una cianina aromatica in soluzione acquosa.

Su di una aliquota di tale soluzione è inviata una radiazione monocromatica di intensità data. Se la lunghezza d'onda della radiazione passa da λ_1 a λ_2 , allora:

- (a) L'energia dei fotoni assorbiti aumenta di circa 100 volte
- (b) La frazione di radiazione riflessa dal campione aumenta di circa 5 volte
- (c) La frazione di radiazione che attraversa il campione diminuisce di circa 5 volte

(d) La frazione di radiazione assorbita dal campione aumenta di circa 100 volte

Domanda 44. Un contenitore toroidale (vedi figura) è diviso in tre comparti mediante setti mobili che agiscono da membrane selettivamente permeabili all'acqua. All'istante iniziale i comparti hanno lo stesso volume e nel comparto 1 è presente una soluzione acquosa di NaCl 1 mM, mentre in 2 c'è una soluzione acquosa di KBr 2 mM, e in 3 una soluzione acquosa di CaCl₂ 1 mM.

Tenendo presente che l'intero sistema è termostatato a 25°C, e che il volume totale è di 1 litro, i volumi finali dei tre comparti in condizioni di equilibrio saranno pari a:

- (a) V1 = 0.167 litri, V2 = 0.333 litri, V3 = 0.500 litri
- (b) V1 = 0.333 litri, V2 = 0.333 litri, V3 = 0.333 litri
- (c) V1 = 0.222 litri, V2 = 0.444 litri, V3 = 0.333 litri
- (d) Il sistema è instabile e non si raggiunge l'equilibrio

Domanda 45. Una pila, mantenuta a temperatura costante grazie al contatto con un termostato, viene cortocircuitata. Quale delle seguenti affermazioni è corretta?

- (a) L'entropia della pila aumenta
- (b) La reazione redox che avviene nella pila è esotermica
- (c) L'entalpia della pila diminuisce
- (d) L'energia libera di Gibbs della pila diminuisce

Biologia

Domanda 46. Relativamente alla ricombinazione genetica omologa, quale fra le seguenti affermazioni NON è vera?

- (a) Nelle cellule eucariote è causata dal crossing over fra cromatidi omologhi
- (b) Aumenta la variabilità genetica della progenie
- (c) Negli animali avviene esclusivamente a livello delle cellule germinative
- (d) Nei batteri avviene esclusivamente fra i plasmidi

Domanda 47. Durante lo sviluppo embrionale dei vertebrati costituisce un'asta dorsale di supporto del mesoderma:

- (a) Piastra neurale
- (b) Tubo neurale
- (c) Cordone ombelicale
- (d) Notocorda

Domanda 48. Il principale meccanismo coinvolto nella difesa dalle infezioni virali nei vertebrati è costituito da:

- (a) Anticorpi
- (b) Linfociti T citotossici e cellule natural killer
- (c) Macrofagi
- (d) Neutrofili

Domanda 49. Molte piante contengono neurotossine, sostanze tossiche che agiscono sul sistema nervoso degli animali erbivori. Perchè?

- (a) Le piante hanno imparato a sintetizzare le neurotossine per non essere mangiate dagli animali
- (b) Le piante che possiedono le neurotossine sono sopravvissute in numero maggiore rispetto a quelle che non le possiedono perchè venivano mangiate meno dagli erbivori
- (c) Le piante che possiedono le neurotossine sono avvantaggiate perchè possiedono potenziali di membrana maggiori rispetto a quelle che non le possiedono
- (d) Le piante che possiedono le neurotossine sono sopravvissute in numero maggiore rispetto a quelle che non le possiedono perchè crescono più rapidamente

Domanda 50. Quale delle seguenti affermazioni è vera a proposito dell'evoluzione?

- (a) Gli organismi si perfezionano nel tempo
- (b) L'evoluzione consente l'eliminazione di tutte le caratteristiche non adattative
- (c) L'evoluzione favorisce gli organismi ben adattati, indipendentemente dal fatto che questi si riproducano
- (d) Non è vera nessuna delle precedenti affermazioni

Domanda 51. Negli organismi attualmente viventi, la condizione necessaria perchè avvenga produzione di ossigeno è:

- (a) Possesso di cloroplasti nelle cellule
- (b) Possesso di cloroplasti e mitocondri nelle cellule e presenza di stomi sulle foglie
- (c) Possesso di clorofilla a e ribosomi nelle cellule e presenza di stomi sulle foglie
- (d) Possesso nelle cellule di pigmenti in grado di catturare fotoni

Domanda 52. Con il termine dioica si intende :

- (a) Una pianta che porta fiori maschili e fiori femminili su individui diversi
- (b) Una pianta che porta fiori maschili e fiori femminili sullo stesso individuo
- (c) Una pianta che porta esclusivamente fiori ermafroditi
- (d) Una pianta le cui cellule sono tutte rigorosamente diploidi

Domanda 53. La fissazione dell'azoto è operata dai batteri azotofissatori e da alcune alghe verdi-azzurre. Tali microrganismi:

- (a) Devono essere necessariamente simbionti di piante leguminose
- (b) Devono necessariamente vivere liberi nel terreno
- (c) Devono essere necessariamente autotrofi
- (d) Possono vivere liberi nel terreno o in simbiosi con leguminose e con altre piante

Domanda 54. Molte proteine sono organizzate in domini, unità strutturalmente e funzionalmente distinte. Di solito negli eucarioti un dominio corrisponde ad un esone. L'organizzazione di una proteina in domini:

- (a) Non consente nel corso dell'evoluzione la formazione di geni codificanti per nuove proteine attraverso il riarrangiamento degli esoni
- (b) Conferisce maggiore stabilità alle proteine, consentendo loro di acquisire con maggiore facilità la struttura secondaria e terziaria
- (c) E dovuta alla presenza degli introni, sequenze di DNA spazzatura che nei procarioti separano i diversi esoni

(d) Può consentire di generare a partire da un unico gene una serie di proteine correlate ricomponendo in modi diversi l'RNA prodotto dalla trascrizione (splicing alternativo)

Domanda 55. Quali aspetti biologici devono essere considerati per valutare la "biodiversità" nella sua accezione più ampia e completa?

- (a) Il numero di individui inseriti in comunità di organismi che svolgono diversi ruoli ecologici in un'area geografica
- (b) La numerosità di specie presenti in un'area geografica
- (c) La numerosità di specie con i loro specifici patrimoni genetici e i rispettivi ruoli ecologici presenti in un'area geografica
- (d) La diversità di patrimoni genetici deputati a regolare, con modalità e peso diverso, il ruolo che le specie stesse svolgono all'interno dell'ecosistema

RISPOSTE ESATTE

1 d

2 c

3 c

4 a

5 b

6 c

7 b

8 b

9 b

10 c

11 b

12 c

13 b

14 d

15 b

16 c

17 c

18 c

19 d

20 b

21 c

22 a

23 a

24 a

25 c

26 b

27 c

28 c

29 a

30 d

31 a

32 b

33 b

34 c

35 d

36 b

37 c

38 b

39 c

40 d

41 b

42 d

43 c

44 c

45 d

46 d

47 d

48 b

49 b

50 d

51 d

52 a

53 d

54 d

55 c